ഫ്ലൂറിൻ
ഫ്ലൂറിൻ | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | |||||||||||||||
Allotropes | alpha, beta (see Allotropes of fluorine) | ||||||||||||||
Appearance | വാതകം: വളരെ ഇളം മഞ്ഞ ദ്രാവകം: തെളിഞ്ഞ മഞ്ഞ ഘരം: alpha is opaque, beta is transparent | ||||||||||||||
Standard atomic weight Ar°(F) | |||||||||||||||
ഫ്ലൂറിൻ in the periodic table | |||||||||||||||
| |||||||||||||||
Group | group 17 (halogens) | ||||||||||||||
Period | period 2 | ||||||||||||||
Block | p-block | ||||||||||||||
Electron configuration | [He] 2s2 2p5ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Electrons per shell | 2, 7 | ||||||||||||||
Physical properties | |||||||||||||||
Phase at STP | F-wl: gas | ||||||||||||||
Melting point | (F2) 53.48 K (−219.67 °C, −363.41 °F)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Boiling point | (F2) 85.03 K (−188.11 °C, −306.60 °F)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Density (at STP) | 1.696 g/Lലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
when liquid (at b.p.) | 1.505 g/cm3ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Triple point | 53.48 K, 90 kPaലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Critical point | 144.41 K, 5.1724 MPaലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Heat of vaporization | 6.51 kJ/molലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Molar heat capacity | Cp: 31 J/(mol·K)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) (at 21.1 °C) Cv: 23 J/(mol·K)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) (at 21.1 °C) | ||||||||||||||
Vapor pressure
| |||||||||||||||
Atomic properties | |||||||||||||||
Oxidation states | ഫലകം:Element-symbol-to-oxidation-state-entry | ||||||||||||||
Electronegativity | Pauling scale: 3.98ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Ionization energies |
| ||||||||||||||
Covalent radius | 64 pmലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Van der Waals radius | 135 pmലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Spectral lines of ഫ്ലൂറിൻ | |||||||||||||||
Other properties | |||||||||||||||
Natural occurrence | primordial | ||||||||||||||
Crystal structure | cubic | ||||||||||||||
Thermal conductivity | 0.02591 W/(m⋅K)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
Magnetic ordering | diamagnetic (−1.2×10−4)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil)ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
CAS Number | 7782-41-4ലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) | ||||||||||||||
History | |||||||||||||||
Naming | after the mineral fluorite, itself named after Latin fluo (to flow, in smelting) | ||||||||||||||
Discovery | André-Marie Ampère (1810) | ||||||||||||||
First isolation | Henri Moissanലുവ പിഴവ് ഘടകം:Footnotes-ൽ 80 വരിയിൽ : bad argument #1 to 'ipairs' (table expected, got nil) (June 26, 1886) | ||||||||||||||
Named by | Humphry Davy | ||||||||||||||
Isotopes of ഫ്ലൂറിൻ | |||||||||||||||
Template:infobox ഫ്ലൂറിൻ isotopes does not exist | |||||||||||||||
രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടാനുള്ള കഴിവ് ഏറ്റവും കൂടുതലുള്ള വാതകമൂലകമാണ് ഫ്ലൂറിൻ. മങ്ങിയ മഞ്ഞകലർന്ന പച്ച നിറമുള്ള ഒരു വിഷവാതകമാണ് ഇത്. മറ്റു ഹാലൊജനുകളെപ്പോലെ തന്മാത്രാരൂപത്തിലുള്ള ഫ്ലൂറിൻ വളരെ അപകടകാരിയാണ്. ത്വക്കുമായി സമ്പർക്കത്തിലേർപ്പെട്ടാൽ ഗുരുതരമായ പൊള്ളലേൽക്കാന്നു.
ഗുണങ്ങൾ
[തിരുത്തുക]ഇതിന്റെ അണുസംഖ്യ 9-ഉം പ്രതീകം F എന്നുമാണ്. സ്വതന്ത്രാവസ്ഥയിൽ ദ്വയാണുതന്മാത്രയായി (F2) സ്ഥിതി ചെയ്യുന്നു. ആവർത്തനപ്പട്ടികയിൽ 17-മത് ഗ്രൂപ്പായ ഹാലൊജനുകളുടെ കൂട്ടത്തിൽപ്പെട്ട മൂലകമാണ് ഇത്.
സാധാരണഗതിയിൽ രാസപ്രവർത്തനത്തിലേർപ്പെടുന്ന മൂലകങ്ങളിൽ ഇലക്ട്രോ നെഗറ്റിവിറ്റി ഏറ്റവും അധികമുള്ള മൂലകമാണ് ഫ്ലൂറിൻ. ഇതിന്റെ ഇലക്ട്രോ നെഗറ്റിവിറ്റി പോളിങ് പട്ടികയിൽ 3.98 ആണ്. മറ്റു മൂലകങ്ങളുമായി വളരെ പെട്ടെന്ന് രാസപ്രവർത്തനത്തിലേർപ്പെടുന്നു. രാസപ്രവർത്തനത്തിൽ വളരെ കുറവായി മാത്രം ഏർപ്പെടാറുള്ള ക്രിപ്റ്റോൺ, സിനോൺ, റഡോൺ മുതലായ ഉൽകൃഷ്ടവാതകങ്ങളുമായിപ്പോലും ഫ്ലൂറിൻ പ്രവർത്തിക്കുന്നു. എന്നാൽ ഹീലിയം, നിയോൺ, ആർഗോൺ എന്നീ ഉത്കൃഷ്ടമൂലകങ്ങളുമായി ഫ്ലൂറിൻ നേരിട്ട് സംയോജിക്കുന്നില്ല. വളരെ കുറഞ്ഞ താപനിലയിലും ഹൈഡ്രജനുമായുള്ള ഇതിന്റെ പ്രവർത്തനം സ്ഫോടനം ജനിപ്പിക്കുന്നതാണ്. ലോഹങ്ങൾ, ജലം മുതലായ പദാർത്ഥങ്ങൾ ഈ വാതകത്തിന്റെ മർദ്ദിതപ്രവാഹത്തിൽ തെളിഞ്ഞ ജ്വാലയോടു കൂടി കത്തുന്നു. സ്ഫടികത്തിന്റെ ഘടകമായ സിലിക്കൺ ഡയോക്സൈഡുമായി അന്തരീക്ഷത്തിലെ ആർദ്രതയുടെ സാന്നിധ്യത്തിൽ രാസപ്രവർത്തനത്തിലേർപ്പെടുന്നതിനാൽ, ഫ്ലൂറിൻ നിർമ്മാണത്തിനോ സംഭരിക്കുന്നതിനോ സാധാരണ സ്ഫടികപ്പാത്രങ്ങൾ അനുയോജ്യമല്ല. അതുകൊണ്ട്, ഫ്ലൂറോകാർബണുകൾ പൂശിയ പ്രത്യേകതരം ക്വാർട്സ് കുഴലുകളിൽ ആണ് ഫ്ലൂറിൻ സൂക്ഷിക്കുന്നത്. ആർദ്രതയേറിയ വായുവിന്റെ സാന്നിധ്യത്തിൽ വായുവിലെ ജലാംശവുമായി ഫ്ലൂറിൻ പ്രവർത്തിച്ച് ഹൈഡ്രോഫ്ലൂറിക് അമ്ലം ഉണ്ടാകുന്നു.
ഇലക്ട്രോ പോസിറ്റീവ് ആയ മൂലകങ്ങളുമായി ഫ്ലൂറിൻ സംയോജിച്ചുണ്ടാവുന്ന സംയുക്തങ്ങളാണ് ഫ്ലൂറൈഡുകൾ. ഇത്തരം അയോണിക ലവണങ്ങൾ പരൽ രൂപത്തിലാണ് സാധാരണയായി കാണപ്പെടുന്നത്. ലോഹങ്ങളുമായുള്ള ഫ്ലൂറിൻ സംയുക്തങ്ങൾക്ക് സ്ഥിരത വളരെയധികമാണ്. (ഉദാ: കാത്സ്യം ഫ്ലൂറൈഡ്)
ചരിത്രം
[തിരുത്തുക]ലത്തീൻ ഭാഷയിലെ ഫ്ലൂർ എന്നതിൽ നിന്നാണ് ഫ്ലൂറിൻ എന്ന വാക്കിന്റെ ആവിർഭാവം. ഫ്ലൂർസ്പാർ അഥവാ കാത്സ്യം ഫ്ലൂറൈഡ്, ലോഹങ്ങളുടേയും ധാധുക്കളുടേയും സങ്കലനത്തിനെ സഹായിക്കുന്നതിനുള്ള ഫ്ലക്സ് ആയി ഉപയോഗിക്കാം എന്ന് 1530-ൽ ജോർജിയസ് അഗ്രികോല വിശദീകരിച്ചിട്ടുണ്ട്.
അമ്ലവുമായി പ്രവർത്തിപ്പിച്ച ഫ്ലൂർസ്പാറിന്റെ സാന്നിധ്യം സ്ഫടികത്തിന് ശോഷണം ഉണ്ടാക്കുന്നു എന്ന് 1670-ൽ ഷ്വാൻഹാർഡ് കണ്ടെത്തി. കാത്സ്യം ഫ്ലൂറൈഡിനെ (ഫ്ലൂർസ്പാർ) ഗാഢ സൾഫ്യൂറിക് അമ്ലവുമായി പ്രവർത്തിപ്പിച്ച് ഹൈഡ്രോഫ്ലൂറിക് അമ്ലം ഉണ്ടാക്കി, അതുപയോഗിച്ച് നിരവധി ശാസ്ത്രജ്ഞന്മാർ പരീക്ഷണങ്ങൾ നടത്തിയിട്ടുണ്ട്. ഹൈഡ്രോഫ്ലൂറിക് അമ്ലം അക്കാലത്ത് അജ്ഞാതമായ ഏതോ മൂലകം അടങ്ങിയിരിക്കുന്ന ഒന്നാണെന്ന് അവർ അനുമാനിച്ചെങ്കിലും ഘടകമൂലകമായ ഫ്ലൂറിനെ വേർതിരിച്ചെടുക്കാൻ അന്ന് സാധിച്ചിരുന്നില്ല. ഫ്ലൂറിന്റെ പ്രവർത്തനശേഷി ആണ് ഇതിന് പ്രധാന തടസമായിരുന്നത്. ഫ്ലൂറിന്റെ സംയുക്തങ്ങളെ വൈദ്യുതവിശ്ലേഷണം നടത്തി മാത്രമേ ഫ്ലൂറിനെ വേർതിരിക്കാൻ പറ്റുകയുള്ളൂ. അങ്ങനെ വേർതിരിക്കപ്പെട്ടു കഴിഞ്ഞാൽത്തന്നെ അടുത്തുള്ള അനുയോജ്യമായ വസ്തുക്കളുമായി പ്രവർത്തിച്ച് ഫ്ലൂറിൻ വീണ്ടും സംയുക്താവസ്ഥ പ്രാപിക്കുകയും ചെയ്യും. 1886-ൽ ഹെൻറി മോയ്സൻ ആണ് ഒരു പറ്റം രസതന്ത്രജ്ഞരുടെ 74 വർഷത്തെ തുടർച്ചയായ പരീക്ഷണനിരീക്ഷണങ്ങൾക്കൊടുവിൽ ഫ്ലൂറിൻ മൂലകത്തെ വേർതിരിച്ചെടുത്തത്.
ഹൈഡ്രോഫ്ലൂറിക് അമ്ലത്തിൽ നിന്നും ഫ്ലൂറിൻ വേർതിരിക്കുന്ന ഈ പ്രക്രിയ വളരെ അപകടം നിറഞ്ഞതാണ്. നിരവധി ശാസ്ത്രജ്ഞർക്ക് ഈ പരീക്ഷണങ്ങൾക്കിടയിൽ ആരോഗ്യവും ജീവൻ തന്നെയും നഷ്ടമായിട്ടുണ്ട്. പലർക്കും കാഴ്ച നഷ്ടപ്പെട്ടിട്ടുണ്ട്. ഇത്തരം ആളുകളെ “ഫ്ലൂറിൻ രക്തസാക്ഷികൾ” എന്നാണ് ആദരപൂർവം വിളിക്കുന്നത്. മോയ്സന് 1906-ലെ രസതന്ത്രത്തിനുള്ള നോബൽ സമ്മാനം നേടിക്കൊടുത്തത് ഈ കണ്ടെത്തലിനാണ്. മോയ്സൻ തന്നെ 54 വയസ്സു വരെയേ ജീവിച്ചിരുന്നുള്ളൂ. ഇത് ഫ്ലൂറിനിൽ നിന്നുള്ള ആരോഗ്യപ്രശ്നങ്ങൾ മൂലമാണെന്നും കരുതപ്പെടുന്നു.
നിർമ്മാണം
[തിരുത്തുക]മോയ്സൻ ഉപയോഗിച്ച അതേ രീതി തന്നെയാണ് ഇന്നും വ്യാവസായികമായി ഫ്ലൂറിൻ നിർമ്മിതിക്കയി ഉപയോഗിക്കുന്നത്. നിർജലീകരിച്ച HF നെ വൈദ്യുതവിശ്ലേഷണം നടത്തുന്ന രീതിയാണ് ഇത്. വൈദ്യുതചാലനത്തിനായി ആവശ്യത്തിന് അയോണുകൾക്കായി KHF2 കൂടി ലായനിയിൽ അലിയിച്ചാണ് വൈദ്യുതവിശ്ലേഷണം നടത്തുന്നത്.
1986-ൽ ഫ്ലൂറിൻ കണ്ടെത്തലിന്റെ 100 വാർഷികാഘോഷവേളയിൽ കാൾ ക്രിസ്റ്റി ഫ്ലൂറിൻ നിർമ്മാണത്തിനുള്ള മറ്റൊരു രീതി അവതരിപ്പിച്ചു. 150 °C താപനിലയിൽ HF, K2MnF6, SbF5 എന്നിവയുടെ നിർജലലായനികളെ പ്രവർത്തിപ്പിച്ചാണ് ഇത് ചെയ്തത്. രാസസമവാക്യം:
- 2K2MnF6 + 4SbF5 → 4KSbF6 + 2MnF3 + F2
ഇത് ഫ്ലൂറിൻ നിർമ്മാണത്തിനുള്ള പ്രായോഗികരീതി അല്ലെങ്കിലും, വൈദ്യുതവിശ്ലേഷണത്തിലൂടെയല്ലാതെയും ഫ്ലൂറിൻ നിർമ്മിക്കാം എന്നു തെളിയിക്കാൻ സാധിച്ചു.
സംയുക്തങ്ങൾ
[തിരുത്തുക]ജൈവസംയുക്തങ്ങളിൽ (organic compounds) ഹൈഡ്രജൻ വരുന്ന ഇടങ്ങളിലെല്ലാം ഫ്ലൂറിനെ പകരമായി നിർത്താം. ഇങ്ങനെ നോക്കിയാൽ ഫ്ലൂറിൻ ഉൾക്കൊള്ളുന്ന വളരെയധികം സംയുക്തങ്ങൾ ഉണ്ടാകാം. ആവർത്തനപ്പട്ടികയിലെ ഹീലിയം, നിയോൺ എന്നീ രണ്ടുമൂലകങ്ങളൊഴിയുള്ള എല്ലാ മൂലകങ്ങളുമായുള്ള ഫ്ലൂറിൻ സംയുക്തങ്ങൾ നിർമ്മിക്കപ്പെട്ടിട്ടുണ്ട്.
ഉൽകൃഷ്ടവാതകങ്ങളുമായുള്ള ഫ്ലൂറിൻ സംയുക്തങ്ങൾ ആദ്യമായി നിർമ്മിച്ചത് 1962-ൽ നീൽ ബാർറ്റ്ലെറ്റ് ആണ്. ക്സെനോൺ ഹെക്സാഫ്ലൂറോപ്ലാറ്റിനേറ്റ് (hexafluoroplatinate, XePtF6), ആണ് ഇത്തരത്തിലുള്ള ആദ്യ സംയുക്തം. ക്രിപ്റ്റണിന്റേയും റഡോണിന്റേയും ഫ്ലൂറൈഡുകൾ അതിനു ശേഷം നിർമ്മിക്കപ്പെട്ടു. ആർഗണിന്റെയും ഫ്ലൂറോഹൈഡ്രൈഡ് നിർമ്മിക്കാൻ സാധിച്ചിട്ടുണ്ടെങ്കിലും. ഈ സംയുക്തത്തിന് അതിശീത താപനിലയിൽ മാത്രമേ നിലനിൽപ്പുള്ളൂ.
ഉപയോഗങ്ങൾ
[തിരുത്തുക]അർദ്ധചാലകങ്ങളുടെ നിർമ്മാണത്തിനായുള്ള പ്ലാസ്മാ എച്ചിങ് (plasma etching), ഫ്ലാറ്റ് പാനൽ ഡിസ്പ്ലേയുടെ നിർമ്മാണം, എം.ഇ.എം.എസ്. നിർമ്മാണം തുടങ്ങിയ മേഖലകളിൽ ഫ്ലൂറിൻ, അണു രൂപത്തിലും തന്മാത്രാരൂപത്തിലും ഉപയോഗപ്പെടുത്തുന്നു. ഇതിന്റെ മറ്റുപയോഗങ്ങൾ താഴെപ്പറയുന്നു.
- ബൾബുകളിലേയും മറ്റു ഉപകരണങ്ങളിലേയും ചില്ലിന് രൂപം നൽകുന്നതിന് ഹൈഡ്രോഫ്ലൂറിക് അമ്ലം (HF) ഉപയോഗിക്കുന്നു.
- ടെഫ്ലോൺ പോലെയുള്ള ഘർഷണം കുറവുള്ള പ്ലാസ്റ്റിക് നിർമ്മാണത്തിനും ഫ്രിയോൺ പോലെയുള്ള ഹാലോണുകളുടെ നിർമ്മാണത്തിനും ഫ്ലൂറിൻ പരോക്ഷമായി ഉപയോഗിക്കുന്നു.
- യുറേനിയം ഹെക്സാഫ്ലൂറൈഡിൽ നിന്ന് ശുദ്ധ യുറേനിയം വേർതിരിച്ചെടുക്കുന്നതിന്.
- മരുന്നുകൾ, കാർഷികോപയോഗപ്രദമായ രാസപദാർത്ഥങ്ങൾ, ലൂബ്രിക്കന്റുകൾ, തുണിത്തരങ്ങൾ എന്നിവയുടെ നിർമ്മാണത്തിന്.
- വാതാനുകൂലമാക്കുന്നതിനും (air conditioning) ശീതീകരണത്തിനും ഫ്ലൂറോക്ലോറോഹൈഡ്രോകാർബണുകൾ വളരെയധികം ഉപയോഗിക്കപ്പെടുന്നു. ക്ലോറോഫ്ലൂറോകാർബണുകൾ (സി.എഫ്.സി.) ഓസോൺ പാളിക്ക് കോട്ടമുണ്ടാക്കുന്നു എന്ന കാരണത്താൽ ഇത്തരം ഉപയോഗത്തിൽ നിന്ന് നിരോധിച്ചിരിക്കുന്നതാണ്. എന്നാൽ ഇതിലെ ക്ലോറിന്റേയും, ബ്രോമിന്റേയും റാഡിക്കലുകളാണ് യഥാർത്ഥത്തിൽ ഓസോണിനെ നശിപ്പിക്കുന്നത്, മറിച്ച് ഫ്ലൂറിന്റെ പ്രവർത്തനം കൊണ്ടല്ല. അതിനാൽ ഫ്ലൂറിനും കാർബണും ഹൈഡ്രജനും അടങ്ങിയ സംയുക്തങ്ങളായ ഹൈഡ്രോഫ്ലൂറോകാർബണുകളാണ് ഇത്തരം ആവശ്യങ്ങൾക്കായി ഇപ്പോൾ ഉപയോഗിക്കുന്നത്. ഹൈഡ്രോഫ്ലൂറോകാർബണുകൾ ഹരിതഗൃഹപ്രഭാവം ഉളവാക്കുന്നവയാണ്. എന്നാൽ കാർബൺ ഡൈ ഓക്സൈഡ്, മീഥേൻ മുതലായ ഹരിതഗൃഹവാതകങ്ങളെയപേക്ഷിച്ച് ഇത് നിസ്സാരമാണ്. സൾഫർ ഹെക്സാഫ്ലൂറൈഡ് നിർവീര്യവും വിഷമില്ലാത്തതുമായ ഒരു പ്രധാന ഹരിതഗൃഹവാതകമാണ്.
- സെവോഫ്ലൂറേൻ, ഡെസ്ഫ്ലൂറേൻ, ഐസോഫ്ലൂറേൻ എന്നിങ്ങനെ ശസ്ത്രക്രിയാരംഗത്ത് മയക്കുന്നതിനായി (അനസ്തേഷ്യ) ഉപയോഗിക്കുന്ന പദാർത്ഥങ്ങൾ ഹൈഡ്രോഫ്ലൂറോകാർബണുകളാണ്.
- പൂപ്പൽബാധക്കെതിരെയുള്ള മരുന്നായ ഫ്ലൂക്കോനാസോൾ, ആന്റിബയോട്ടിക്` ആയ ഫ്ലൂറോക്വിനൊലോൺസ് എന്നിവ ഫ്ലൂറിൻ സംയുക്തങ്ങളാണ്.
- ക്രയോലൈറ്റ് അഥവാ സോഡിയം ഹെക്സാഫ്ലൂറോഅലുമിനേറ്റ്, ഫ്ലൂറിൻ അടങ്ങിയിരിക്കുന്ന അലൂമിനിയത്തിന്റെ ഒരു ധാതുവാണ്. വൈദ്യുതവിശ്ലേഷണം നടത്തിയാണ് ഇതിൽ നിന്നും അലൂമിനിയം വേരിതിരിക്കുന്നത്.
- പല്ലിലെ പോടിനെ പ്രതിരോധിക്കാനായി, സോഡിയം ഫ്ലൂറൈഡ്(NaF), സ്റ്റാനസ് ഫ്ലൂറൈഡ്(SnF2) , സോഡിയം എം.എഫ്.പി.മുതലായ ഫ്ലൂറിൻ സംയുക്തങ്ങൾ ടൂത്ത് പേസ്റ്റുകളിൽ ഉപയോഗിക്കുന്നുണ്ട്. ജലത്തിന്റെ ശുദ്ധീകരണത്തിനും(ഫ്ലൂറിനേഷൻ) ഈ സംയുക്തങ്ങൾ ഉപയോഗിക്കാറുണ്ട്.
- ഗാഢമായ സോഡിയം ഫ്ലൂറൈഡ് കീടനാശിനിയാണ്. പ്രധാനമായും പാറ്റകൾക്കെതിരെ ഇത് ഉപയോഗിക്കുന്നു.
- 18F, റേഡിയോപ്രവർത്തനം ഉള്ള ഐസോട്ടോപ്പ് ആണ്. ഇത് പോസിട്രോൺ ഉത്സർജ്ജിക്കുന്നു. 110 മിനിറ്റാണ് ഇതിന്റെ അർദ്ധായുസ്സ്
- ഫ്ലൂറിനെ റോക്കറ്റ് ഇന്ധനമായി ഉപയോഗിക്കുന്നതിനായി മുൻകാലങ്ങളിൽ ശ്രമം ഉണ്ടായിരുന്നെങ്കിലും അത് വിജയിച്ചിരുന്നില്ല.
H | He | ||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
ക്ഷാരലോഹങ്ങൾ | ക്ഷാരീയമൃത്തികാലോഹങ്ങൾ | ലാന്തനൈഡുകൾ | ആക്റ്റിനൈഡുകൾ | സംക്രമണ ലോഹങ്ങൾ | മറ്റു ലോഹങ്ങൾ | അർദ്ധലോഹങ്ങൾ | അലോഹങ്ങൾ | ഹാലൊജനുകൾ | ഉൽകൃഷ്ട വാതകങ്ങൾ | രാസസ്വഭാവം കൃത്യമായി മനസ്സിലാക്കാൻ പറ്റിയിട്ടില്ലാത്ത മൂലകങ്ങൾ |
- ↑ "Standard Atomic Weights: Fluorine". CIAAW. 2021.
- ↑ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry (in ഇംഗ്ലീഷ്). doi:10.1515/pac-2019-0603. ISSN 1365-3075.